i Chapter 4 Combinational Logic

e | 0gic circuits for digital systems may be
combinational or sequential.

e A combinational circuit consists of input variables,
logic gates, and output variables.

— R
— >
. Combinational
ninputs — > L — > moutputs
: circuit
> - >

Fig. 4-1 Block Diagram of Combinational Circuit

i 4-2. Analysis procedure

3. Repeat the process outlined in step 2 until the outputs of
the circuit are obtained.

4. By repeated substitution of previously defined functions,
obtain the output Boolean functions in terms of input

variables.

i 4-2. Analysis procedure

3. Repeat the process outlined in step 2 until the outputs of
the circuit are obtained.

4. By repeated substitution of previously defined functions,
obtain the output Boolean functions in terms of input

variables.

i Example

F, =AB+AC+BC;, T,=A+B+C; T,=ABC; T3=F'T;;
F]_ = T3 + T2
Fi=T;+ T,=F,T;+ ABC = ABC + AB'C + AB'C' + ABC

a— -\

c—1r ‘Dir,
a1 mwd

C —r_..-'/

A —

Derive truth table from logic
i diagram

e We can derive the truth table in Table 4-1 by using
the circuit of Fig.4-2.

Table 4-1

Truth Table for the Logic Diagram of Fig. 4-2
A B C Fa F, T, T, Ts Fy
0 0 0 0 | 0 0 0 0
0 0 1 0 1 | 0 1 |
0 1 0 0 1 | 0 | |
0 I | 1 0 I 0 O 0
1 0 0 0 I I 0 l 1
| 0 1 | 0 | 0 0 0
| I 0 | 0 I 0 0 0
| 1 1 | 0 I I 0 l

i 4-3. Design procedure

1. Table4-2 is a Code-Conversion example, first, we
can list the relation of the BCD and Excess-3
codes in the truth table.

Table 4-2
Truth Tabile for Code-Conversion Exampie

input BCD Output Excess 3 Code
A B C D w x ¥ z

0 0 0 0 i i |
0 D 0 | 0 |) 0

O i 0 O | O I
] 0] i 0 i 1

Cl = - e -
—
-
—

i Karnaugh map

2,

For each symbol of the Excess-3 code, we use 1’s
to draw the map for simplifying Boolean function.

[y s o i
AR 00 (A 11 10y AR 00
1 1 (M) 1 1
01 1 1
7
11 11 X7
~A ~1
1c 10y 1
o 7
I [5 'l ;
o r L |
A7 1 11 1 AT 0 1 11 1
1 1 1 (M

i Circuit implementation

z=D)

y=CD+CD =CD + (C+ D)

Xx=BC+ BD+BCD =B(C+ D)+ B(C+ D)
w=A+BC+BD=A+B(C+ D)

B

D‘G D’
[) ¢D Vi
S —
@—0—%—« (C +DYy
C +D

Fig. 4-4 Logic Diagram for BCD to Excess-3 Code Converter

i 4-4. Binary Adder-Subtractor

e A combinational circuit that performs the addition of two
bits is called a half adder.
e The truth table for the half adder is listed below:

Table 4-3

Half Adder
X y ¢ S S: Sum
0 0 0 0 C: Carry
0 | 0 |
| 0 0 |
| 1 1 0
S =Xy + xy’

i Implementation of Half-Adder

S

By
- g— ;
-]

il

- = = = = =

(a) S =xy’ +x'y (b)S=xDy
C=uxy C=uxy

Fig. 4-5 Implementation of Half-Adder

10

i Full-adder

//Description of full adder (see Fig d-8)
module fulladder (5,C,x,y,2);
input x,y,2;
output 5,C;
wire 81,01,02; //Outputs of first XOR and two AND gates
//Instantiate the halfadder
halfadder HAL (S1,D1,x,yl,
HA2 (8,D2,81,2);
or ¢1(C,02,01);
endnodule

52

iS

implifie

X

X

0

-1?{'
00 01

)

11

10

3‘ o _,rr_}-rj: +]_ly:r_'_ _I'}":' 4 _1‘"].‘:

X

0

d Expressions

2
00 01

'If'

11 10

Fig. 4-6 Maps for Full Adder

S =XYyz+ XYyzZ + Xy'Z + XYz
C=xy+xz+yz

12

FuUll adder impiemented In
i SOP

[1]

:

—>— 1P
T

Fig.4-7 Implementation of Full Adder in Sum of Products

}

DS
D

D_

| | |

13

i Another implementation

e Full-adder can also implemented with two half
adders and one OR gate (Carry Look-Ahead adder).
S=z (xDYy)
= Z(xy’ + Xy) + z(xy’ + Xy)
=Xy'Z + XyZ + XyzZ + XYz
C=2z(xy' + Xy) + Xy = Xy'z + Xyz + Xy

TN

X L 4

o—

i

}

\J

w

Fig. 4-8 Implementation of Full Adder with Two Half Adders and an OR Gate 14

e This is also called
Ripple Carry
Adder ,because of
the construction
with full adders are
connected in
cascade.

Binary adder

Subscript i 5. 2 1. 0

Input carry 0 1 1 0 G

Augend Lk - 9 A,

Addend ik -3 3 B,

Sum L% & D \Y

Output carry 0 0 1 1 Cis

By Ay B, A, By A By Ay

0 S U S O Y O

FA | = FA fe FA & A le——(
T T T

C-I S_}‘ '33

S

Fig. 4-9 4-Bit Adder

3o

12

i Carry Propagation

e Because the propagation delay will affect the output signals
on different time, so the signals are given enough time to
get the precise and stable outputs.

e The most widely used technique employs the principle of
carry look-ahead to improve the speed of the algorithm.

,;: . P; '_,D ¢
— —Di Ci+1

Fig. 4-10 Full Adder with P and G Shown 17

i Carry Propagation

e Because the propagation delay will affect the output signals
on different time, so the signals are given enough time to
get the precise and stable outputs.

e The most widely used technique employs the principle of
carry look-ahead to improve the speed of the algorithm.

,;: . P; '_,D ¢
— —Di Ci+1

Fig. 4-10 Full Adder with P and G Shown 17

Boolean functions

P,=A @ B; steady state value
G = AB steady state value
Output sum and carry
Si=P, & (G
Civ1 = G + PG
G, : carry generate P, : carry propagate
Co = input carry
C, =Gy + PGy
C, = G, + P,C; = G, + P,Gy + P,P{C,]
G =G, + P,C, = G, + P,G; + P,P,G, + P,P,PyCy

e C; does not have to wait for C, and C, to propagate.

18

Logic diagram of
i carry look-ahead generator

e C; is propagated at the same time as C, and C;.

>
) ;
) E\} Cs
Go
-
o
r D
&5
N
Py it FW '
(&
Co

Fig. 4-11 Logic Diagram of Carry Lookahead Generator 19

i 4-bit adder with carry lookahead

e Delay time of n-bit CLAA = XOR + (AND + OR) + XOR

e e
3
3 7 i

3o — 4 :
2 i 4
jif;.?

-]j : vy

VTt —1»—)—D— :
B
0 — 71

Carry
Look ahcead

Cy

T

Fig. 4-12 4-Bit Adder with Carry Lookahead

20

i Binary subtractor

M = 1(Isubtractor

Cy

» M = 0Jadder

A B Az B A By Ay
M
Y Y
Cs C) & Co
FA - FA ~ FA - FA -
S Sa S So

Fig. 4-13 4-Bit Adder Subtractor
21

i Overflow _

e Itis worth noting Fig.4-13 that binary numbers in the
sighed-complement system are added and subtracted by the
same basic addition and subtraction rules as unsigned
numbers.

e Overflow is a problem in digital computers because the
number of bits that hold the number is finite and a result
that contains n+1 bits cannot be accommodated.

22

i Overflow on signed and unsigned

e When two unsigned numbers are added, an overflow is
detected from the end carry out of the MSB position.

e When two sighed numbers are added, the sign bit is treated
as part of the number and the end carry does not indicate
an overflow.

e An overflow cann’t occur after an addition if one number is
positive and the other is negative.

e An overflow may occur if the two numbers added are both
positive or both negative.

23

4-5 Decimal adder
BCD adder can’t exceed 9 on each input digit. K is the carry.

Table 4-5
Derivation of BCD Adder

Binary Sum BCD Sum Decimal

K Zg Za Z3 Zy C S5s S5a 52 5,

0 0 0 0 0 0 0 0 0 O 0
] 0 O 0O 1 O 0 0 0 1 I
0 0 0 1 0 0 L O | 0 2
0 0 O 1 1 0 0 0 1 1 3
0 0 1 QO) O 0 I 0O 0O 4
0 0 1 O 1 O 0 1 0 I 3
0 0 1 1 0 0 0 1 1 0 6
0 0 1 1 1 0 0 1 1 1 7
0O 1 0 0 0 O 1 0 0 0 e
0 1 0 0 1 0 1 0 0 1 9
0 1 0 1 0 1] O 0 8] 10
0 [0 1 1 | 0 O 0 1 11
0 1 1 0 0 1 0 0 1 0 12
0 1 1 0O 1 | 0 O 1 1 13
0 1 1 1 0 1 0 I 0 0 14
0 I 1 1 1 1 O 1 0 1 15
1 0 0 O 8 1 0 1 O 16
| 0 0 O 1 1 0 I 1 I 17
1 0 O 1 O 1 1 O 0 0 18
1 0 O 1 1 1 1 0 0 1 19

i Rules of BCD adder

e When the binary sum is greater than 1001, we obtain a
hon-valid BCD representation.

e The addition of binary 6(0110) to the binary sum converts it
to the correct BCD representation and also produces an
output carry as required.

e To distinguish them from binary 1000 and 1001, which also
have a 1 in position Zg, we specify further that either Z, or
Z, must have a 1.

C =K + 2824 + ZBZZ

25

i Implementation of BCD adder

e A decimal parallel Addend Augend
adder that adds n SENENNEY

Carry K 4- bit binary adder (.a_lrry

decimal digits needs e g
n BCD adder stages.

e The output carry o R = FC
from one stage e B
must be connected
to the input carry of TR T
the next higher- it
order stage. T 1]

Ss Si S S

If =1

B 1r 1! '1! "f

Fig. 4-14 Block Diagram of a BCD Adder

4-6. Binary multiplier

e Usually there are more bits in the partial products and it is necessary to
use full adders to produce the sum of the partial products.

Fig. 4-15 2-Bit by 2-Bit Binary Multiplier 37

i 4-bit by 3-bit blnary multlpller

e For J multiplier bits and K
multiplicand bits we need
(J X K) AND gates and (J -
1) K-bit adders to produce
a product of J+K bits.

e K=4 and]J=3, we need 12
AND gates and two 4-bit
adders.

4-bit adder

Y
Ce o8 C, Cs Cs

Fig. 4-16 4-Bit by 3-Bit Binary Multiplier

Fd o}

4-7. Magnitude comparator

e The equality relation of each N
pair of bits can be expressed '%.\5}1 e
logically with an exclusive-NOR #<>—L

function as:

A = A,AAA, ; B = B,B,B,B, E#DR -
x=AB+A'B/ fori=0,1,2,3 E}D

(A - B) - X3X2X1XD —

yu‘

i[>—{ﬂ. < B)

@

29

UQ U0 U

Fig. 4-17 4-Bit Magnitude Comparator

Magnitude comparator
e We inspect the relative Ar*k H):

magnitudes of pairs of MSB. If B Bz

equal, we compare the next

lower significant pair of digits A
until a pair of unequal digits is
reached.

HJU

o If the corresponding digit of A is

i it

B
-
1 and that of B is 0, we conclude & %)
that A>B. —
Ag |)
(A>B)= %D E=p
A3B’3+X3A,B 5+ X3%,A B 1+ XXX AB g = -
(A<B)= D (A =B)

A,3 B3 +X3A,282+X3X2A1 181 +X3X2X1A,DBU
Fig. 4-17 4-Bit Magnitude Comparator ”

i 4-8. Decoders

e The decoder is called n-to-m-line decoder, where
m<2".

e the decoder is also used in conjunction with other
code converters such as a BCD-to-seven_segment
decoder.

e 3-to-8 line decoder: For each possible input
combination, there are seven outputs that are
equal to 0 and only one that is equal to 1.

a1

D
0
O
)
h
e
-
. -
el
O
-
O
-
O
=
O
e
| -
(),
&
RO,
Q.
=
]

Table 46
xy'z[1yth Tobl of o 3-to-Line Decoder

L — B — . — . — L —— N — N ——

Dy
Dy
I
n
Dy
Ds
D
D

Fig. 4-18 3-10-8-Line Decoder

i Decoder with enable input

e Some decoders are constructed with NAND gates, it

becomes more economical to generate the decoder

minterms in their complemented form.

e As indicated by the truth table , only one output can be

equal to 0 at any given time, all other outputs are equal to 1.

g

£

0 0
0 0
74 0 |
0 1

AT[>07
B —»—{>o—,
[>o

E

Y YL

Ds

(a) Logic diagram

Fig. 4-19 2-to-4-Line Decoder with Enable Input

B Dy D

(b) Truth table

]

33

i Demultiplexer

e A decoder with an enable input is referred to as a
decoder/demultiplexer.

e The truth table of demultiplexer is the same with
decoder. % .

-

c -+~ Demultiplexer D1
—— D2

— D3

— DO

34

3-to-8 decoder with enable
i implement the 4-to-16 decoder

x
B 3 X8 I
Y decoder OASkT
rd L d E
W—.—DC
3 X8
decoder DgitorDs
E

Fig. 4-20 4 X 16 Decoder Constructed with Two 3 X 8 Decoders 35

Implementation of a Full Adder
with a Decoder

e From table 4-4, we obtain the functions for the combinational circuit in
sum of minterms:

S(x, ¥, 2z)=2(1,2,4,7)
C(x,y,z) =2(3,5,6,7)

0

IXE8
decoder

-] o th 5 W N =

Fig. 4-21 Implementation of a Full Adder with a Decoder

36

4-9. Encoders

e An encoder is the inverse operation of a decoder.

e We can derive the Boolean functions by table 4-7
z=D,+ D3+ D+ D,
y =D, + D3+ D¢+ D,
X =D4+ Ds+ Dg+ D,

Table 4-7

Truth Table of Octal-to-Binary Encoder
Inputs Outputs
D, D, D, D, D, D D, D, X v z
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 m
0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 m
0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1 [1]

Priority encoder

V=0no valid inputs
V=1llvalid inputs

X's in output columns represent
don’t-care conditions

X's in the input columns are
useful for representing a truth
table in condensed form.
Instead of listing all 16
minterms of four variables.

Table 4-8
Truth Table of a Priority Encoder
Inputs Outputs

Db, D, D, D x y Vv
0 0 0 0 X X (
| 0 i | 0 0]
X I 0] 0 l I
X X 1 0 I 0 I
X X X I I l l

39

Priority encoder

V=0no valid inputs
V=1llvalid inputs

X's in output columns represent
don’t-care conditions

X's in the input columns are
useful for representing a truth
table in condensed form.
Instead of listing all 16
minterms of four variables.

Table 4-8
Truth Table of a Priority Encoder
Inputs Outputs

Db, D, D, D x y Vv
0 0 0 0 X X (
| 0 i | 0 0]
X I 0] 0 l I
X X 1 0 I 0 I
X X X I I l l

39

e Implementation of
table 4-8

X = D2+ D3
y = D3+ D]_Drz
V= D0+ D1+ D2+ D3

Dy

2 D,

00 01 11 10 00 01 11 10

o| x I 1 | 0| X I | 0

01 1 1 1 o1 1 1 1 0

Y
1 I i | il o1 I | 0
Dy
10 1 1 1 10 1 1 0
n_; n_i
x =D+ D; y=D3+ 4D
Fig. 4-22 Maps for a Priority Encoder
D;
"

Dy
D“

4-input priority encoder

Fig. 4-23 4-Input Priority Encoder

2

40

i 4-10. Multiplexers

S=0,Y=1I, Truth Table S Y Y =S, + SI4

1 | 1,

e

i o X v
I

(a) Logic diagram (b) Block diagram

Fig. 4-24 2-to-1-Line Multiplexer

41

HDIL Example 4-8

4-to-1-line Multiplexer

/ /Behavioral description of 4-to-1- line multiplexer
/ /Describes the function table of Fig. 4-25(b).
module mux4xl_bh (10,1i11,i2,i3,select,y);

2noaY 10.31.12.13;:
input [1:0] select;

output v;
reg vy:

always @ (i0 or il or i2 or i3 or select)
case (select)

2'b00:
.) § 1 b
2'B10:
25104

endcase
endmodule

ol T R -

10;
3.3
X2
133

63

Quadruple 2-to-1 Line Multiplexer

e Multiplexer circuits can be combined with common selection inputs to
provide multiple-bit selection logic. Compare with Fig4-24.

Hy

B

B

i34

)
T
| 2

D‘— Yo

oJols/][slslsls

i

Function table
5| Output ¥
X allos

0 0| sclect A
0 1| select B2

-

Fig. 4-26 Ouadruple 2-to-1-Line Multiplexer

43

Boolean function implementation

e A more efficient method for implementing a Boolean
function of n variables with a multiplexer that has n-1
selection inputs.

F(x, v, z) = i(1,2,6,7)

4 X1 MUX

y — 8¢

v — §;
X ¥y Z I
0 0 (0 0
00 i |]i1]F2 PRE N 2
JERTME N T A
oxr hlo|l"™? :
1 0 0 0 F=0 0 ——2
1 0 |1 |0 N
¥ A : .
1 T H-11 B

(a) Truth table (b) Multiplexer implementation

Fig. 4-27 Implementing a Boolean Function with a Multiplexer 44

4-input function with a
multiplexer

F(A, B, C, D) = g4(1, 3, 4, 11, 12, 13, 14, 15)

8 X 1 MUX

A B CD|F
0 0 0[O O] , = %0
0o 0o o|1]| 1| F=D B S
0 0 1][0] 0] . _ A S,
0 0 1/[1]1 =
0 1 00T 1

N D ’ 0
01 0l1 0 F=D 1
0 1 1[0 0 .
o 1t 1)1 0] F=0 ! {>° 2
1 0 0|0] o] ,._ 0 3
L D1 B 4
1 0 1]ol 0
1 0 1)1 1| F=P 2
1 1 0jal 1 1 6
1 1 of1] 1] F7! T .
1 1 10/ 1
1 1 1 (1] 1] F71

Fig. 4-28 Implementing a 4-Input Function with a Multiplexer

i Three state gates

Gates statement: gate name(output, input, control)

>> bufif1(OUT, A, control);

A = OUT when control = 1, OUT = z when control = 0;
>> notifO(Y, B, enable);

Y = B when enable = 0, Y = z when enable = 1;

e out in M~ out
control :I control j
bufifl bufifO

Fig. 4-31 Three-State Gates 54

4-11. HDL for combinational
i circuits

e A module can be described in any one of the
following modeling techniques:

1. Gate-level modeling using instantiation of primitive gates
and user-defined modules.

2. Dataflow modeling using continuous assignment
statements with keyword assign.

3. Behavioral modeling using procedural assignment
statements with keyword always.

47

Gate-level Modeling

e A circuit is specified by its logic gates and their interconnection.
e \erilog recognizes 12 basic gates as predefined primitives.
e The logic values of each gate may be 1, 0, x(unknown), z(high-

impedance).

Table 4-9
Truth Table for Predefined Primitive Gates

and 0O

X

F 4

0
0
0
L0

N % =D

xor | O

0

x
X

o

0

-

[

or

||

0

1

0
|

x

N o - O

X

o’ o oo

A H M

0

0
1

X
X

input

— — ——

A A e i

A e

output

0

!
0
X
X

48

Gate-level description on Verilog
code

The wire declaration is for internal connections.

—D
E A
:D—f} :
— l 1 X
.AT—% 00
00
D
B e 0 1
j{kﬂj
E Dc

(a) Logic diagram

Fig. 4-19 2-to-4-Line Decoder with Enable Input

(b) Truth table

HDL Example 4-1

/ /Gate-level description of a 2-to-4-line decoder

//Figure 4-19

module decoder gl (A,B,E,D);
input A B,E;

output

[0:3]D;

wire Anot,Bnot,Enot;

not
nl
n2
nl

nand
n4
ns
né
nt

endmodule

(Anot ,A),
(Bnot,B),
(Enot ,E);

(D[0],Anot, Bnot, Enot),
(D[1],Anot, B, Enot),
(D[2] ,A, Bnot, Enot),
(D(3],A,B,Enot);

49

i Design methodologies

e There are two basic types of design methodologies: top-
down and bottom-up.

e Top-down: the top-level block is defined and then the sub-
blocks necessary to build the top-level block are
identified.(Fig.4-9 binary adder)

e Bottom-up: the building blocks are first identified and then
combined to build the top-level block.(Example 4-2 4-bit
adder)

50

iA bottom-up hierarchical description

HDL Example 42

//Gate-level hierarchical description of 4-bit adder
/| Description of half adder (see Fig 4-5b)
aodule halfadder (S,C,x,y);

//Instantiate primitive gates
%L (S,X,Y);
and (C,x,y);

endmodule

ol

i Full-adder

//Description of full adder (see Fig d-8)
module fulladder (5,C,x,y,2);
input x,y,2;
output 5,C;
wire 81,01,02; //Outputs of first XOR and two AND gates
//Instantiate the halfadder
halfadder HAL (S1,D1,x,yl,
HA2 (8,D2,81,2);
or ¢1(C,02,01);
endnodule

52

i 4-bit adder

/| /Description of 4-bit adder (see Fig 4-9)
module 4bit_adder (S,C4,A,B,C0);
input (3:0]) A,B;
input C0O;
output (3:0] S;
output C4;
wire C1,C2,C3; //Intermediate carries
//Instantiate the fulladder
fulladder FAO (S[0),C1,A[0],B[0]),CO),
FA1 (S[1],C2,A[1],B[1]),C1),
FA2 (S[2],C3,A[2],B[2],C2),
FA3 (S[3),C4,A[3]),B[3]).C3);

i Three state gates

Gates statement: gate name(output, input, control)

>> bufif1(OUT, A, control);

A = OUT when control = 1, OUT = z when control = 0;
>> notifO(Y, B, enable);

Y = B when enable = 0, Y = z when enable = 1;

e out in M~ out
control :I control j
bufifl bufifO

Fig. 4-31 Three-State Gates 54

2-to-1 multiplexer

e HDL uses the keyword tri to
indicate that the output has
multiple drivers.

A e ° out

module muxtri (A, B, select, OUT);

input A,B,select;

output OUT;

tri OUT; B N

bufifl (OUT,A,select); ”T

bufif0 (OUT,B,select); select —
endmodule

Fig. 4-32 2-to-1-Line Multiplexer with Three-State Buffers

35

e A continuous assignment is
a statement that assigns a
value to a net.

e The data type net is used
in Verilog HDL to represent
a physical connection
between circuit elements.

e A net defines a gate output
declared by an output or
wire.

Dataflow modeling

HDL Example 4-3

//Dataflow description of a 2-to-4-line decoder
//See Fig, 4-19
module decoder df (A B,E,D);

input A B,E;

output (0:3] D;

aseign D(0] = ~(~A & ~B & ~E),
D(1) = ~(~A & B & ~E),

D[2) = ~(A & ~B & ~E),
DI3] = ~(A & B & ~E);
endmodule

57

e A continuous assignment is
a statement that assigns a
value to a net.

e The data type net is used
in Verilog HDL to represent
a physical connection
between circuit elements.

e A net defines a gate output
declared by an output or
wire.

Dataflow modeling

HDL Example 4-3

//Dataflow description of a 2-to-4-line decoder
//See Fig, 4-19
module decoder df (A B,E,D);

input A B,E;

output (0:3] D;

aseign D(0] = ~(~A & ~B & ~E),
D(1) = ~(~A & B & ~E),

D[2) = ~(A & ~B & ~E),
DI3] = ~(A & B & ~E);
endmodule

57

i Dataflow description of 4-bit adder

HDL Example 4-4

//Dataflow description of 4-bit adder
module binary_adder (A,B,Cin,SUM,Cout);
input [3:0] A,B;

input Cin;

output [3:0] SUM;

output Cout;

assign {Cout,SUM} = A + B +Cin;
endmodule

58

Data flow description of a 4-bit
comparator

HDL Example 4-5

//Dataflow description of a 4-bit comparator.
module magcomp (A,B,ALSB,AGTB,AEQB) ;
input (3:0] A,B;
output ALTB, AGTB, AEQB;
assign ALTB=(A < B),
AGTB = (A > B),
AEQB = (A == B);
endmodule

59

i Dataflow description of 2-1 multiplexer

e Conditional operator(? :)
e Condition? true-expression : false-expression;

HDL Example 4-6

//Dataflow description of 2-to-1-line multiplexer
module mux2xl_df (A,B,select,OUT);

input A, B, select;

output OUT;

assign OUT = select ? A : B;
endmodule

60

i Behavioral modeling

e It is used mostly to describe sequential circuits, but can be
used also to describe combinational circuits.

e Behavioral descriptions use the keyword always followed by
a list of procedural assignment statements.

e The target output of procedural assignment statements
must be of the reg data type. Contrary to the wire data type,
where the target output of an assignment may be

continuously updated, a reg data type retains its value until
a new value is assigned.

61

i Behavioral description of 2-1 multiplexer

HDL Example 4-7

//Behavioral description of 2-to-1-line multiplexer
module mux2xl_bh(A,B,select,OUT);
input A, B,select;
output OUT;
reg OUT;
always @ (select or A or B)
if (select == 1) OUT = A;
else OUT = B;
endmodule

62

HDIL Example 4-8

4-to-1-line Multiplexer

/ /Behavioral description of 4-to-1- line multiplexer
/ /Describes the function table of Fig. 4-25(b).
module mux4xl_bh (10,1i11,i2,i3,select,y);

2noaY 10.31.12.13;:
input [1:0] select;

output v;
reg vy:

always @ (i0 or il or i2 or i3 or select)
case (select)

2'b00:
.) § 1 b
2'B10:
25104

endcase
endmodule

ol T R -

10;
3.3
X2
133

63

Writing a simple test bench

e In addition to the always statement, test benches use the initial
statement to provide stimulus to the circuit under test.

e The always statement executes repeatedly in a loop. The initial
statement executes only once starting from simulation time=0 and may
continue with any operations that are delayed by a given number of
time units as specified by the symbol #.

For example:
initial
begin
A=0; B=0;
#10A =1,
#20A=0;B =1,
end

64

Stimulus and design modules
interaction

e The signals of test bench as inputs to the design module are
reg data type, the outputs of design module to test bench

are wire data type.

Stimulus module Design module

module testcircuit module circuit (A, B, C):
reg TA. TB; > input A, B:
wire TC;, |« output C:

circuit cr (TA. TB. TC);

Fig. 4-33 Stimulus and Design Modules Interaction

65

Example 4-9

HDL Example 4-9

F/7scimalus for max2xl1_df.
module testmux;
reg TA,TE,TS:; /S /inputs for mux

wire Y /foutput from mux
mux2Z2xl _4af mx (TA.TB.TS,.Y):; F/ instantiate mux
initial
beagin
TS = 1; TA = 0;: TB = 1;:
#10 TA = 1; TB = 0;
#10 TS = 0;
#10 TA = 0; TB = 1:
and
initial
Sgmonitor("select = %b A = %b B = %b OUT = %b time

TS, TA, TB, Y, $time):
endmodule

/f/Dataflow description of 2-to-1-line mualtiplexer
S/AErom Example 4-6
module mux2xl 4df (A,B.select,OUT) ;
inmput A, B, select;
output OUT;
assign OUT = select 7?7 A : B;
andmodulea

Simualation log:

select = 1 A = 0 B = 1 OUT = 0 time = 0
select = 1 A = 1 B = 0 OUT = 1 time = 10
select = 0 A = 1 B = 0 00T = 0 time = 20
select = 0 A = 0 B =1 00T = 1 time = 30

Gate Level of Verilog Code of Fig.4-2

HDL Example 4-10
/ /Gate-level description of circuit of Fig. 4-2 ;IZ::}IE |
module analysis (A,B,C,F1,F2); A __I:j*“h
input A,B,C; 4 "
output F1,F2; =D L
wire T1,T2,T3,F2not,El,E2,E3;
er gl (T1,A.B,C); ‘I>°r—3_?
and g2 (T2,A,B,C); i
and g3 (E1,A,B); b
and g4 (E2,A,C);
and g5 (E3,B,C); A=
or g6 (F2,El,E2,E3); c—/ L/

not g7 (F2not,F2);

and g8 (T3,T1,F2not);

or ¢9 (F1,T2,T3);
endmodule Fig.4-2 Logic Diagram for Analysis Example

67

Test Bench of the Figure 4-2

//7Stimulus to analyze the circuit
module test_circuit;
reg [2:0]D;
wire Fl,F2;
analysis faig42{(D[2].,.D[(1].,D(0),F1,F2);
initial
begin
D = 3'"b000:;
repeat (7))

#10 D = D + 1'bl:;
end
initial
S$monitoxr ("ABC = %b Fl = %b F2 =%b ".D, Fl, F2)
endmodule

Simulation log:

ABC = 000 F1 = 0 F2 =0
ABC = 001 F1 = 1 F2 =0
ABC = 010 F1 = 1 F2 =0
ABC = 011 F1 = 0 F2 =
ABC = 100 Fl1l = 1 F2 =
ABC = 101 F1l = 0 F2 =
ABC = 110 F1 = 0 F2 =
ABC = 111 Fl1l = 1 F2 =1

