
1ISRA University

Object Oriented programming

Part II

Class Relationships

Instructor: Khalil Barhoum

2ISRA University

Outline

• Class Relationships

• Creating Subclasses

• Overriding Methods

• Class Hierarchies

• Abstract Classes

• Inheritance and Visibility

• Designing for Inheritance

Instructor: Khalil Barhoum

3ISRA University

Class Relationships

• Classes in a software system can have various
types of relationships to each other

• Three of the most common relationships:

– Dependency: A uses B

– Aggregation and Composition: A has-a B

– Inheritance: A is-a B

• Let's discuss dependency and aggregation further

Instructor: Khalil Barhoum

4ISRA University

Dependency

• A dependency exists when one class relies on another in
some way, usually by invoking the methods of the other

• Sometimes the relationship between a two classes is very
weak. They are not implemented with member variables at
all. Rather they might be implemented as member function
arguments.

• Dependency exists if a class is a parameter variable or local
variable of a method of another class.

• This drives home the idea that the service is being requested
from a particular object

• We've seen dependencies in many previous examples

Instructor: Khalil Barhoum

5ISRA University

Dependency cont…

• Dependency relationships are inexpensive from

resource consumption viewpoint and are transient

i.e. their life is for a limited duration.

• There are two ways how a client can make a

reference to a supplier class to form dependency.

– As a Parameter: When the supplier class is used as a

parameter in an operation or as a return type of an

operation in the client or the consuming class.

– As a Local Variable: When the supplier instance is

created locally in the body of an operation of the

consuming class.

Instructor: Khalil Barhoum

6ISRA University

Dependency cont…

Class Card
{ .

.

.

public void GenerateRan(Random rnd)
{

int card = rnd.Next(52); // creates a number between 0 and 51 }

}

Class Card
{ .

.

.

public void GenerateRan()
{
Random rnd = new Random();
int card = rnd.Next(52); // creates a number between 0 and 51

}

}

Card Random

When the supplier class is

used as a parameter

When the supplier class is

used as Local reference

Instructor: Khalil Barhoum

7ISRA University

Aggregation

• An aggregate is an object that is made up of other

objects

• Therefore aggregation is a has-a relationship

– A car has a chassis

• In software, an aggregate object contains

references to other objects as instance data

• This is a special kind of dependency; the aggregate

relies on the objects that compose it

Instructor: Khalil Barhoum

8ISRA University

Aggregation in UML

• In the following example, a Student object is
composed, in part, of Address objects

• A student has an address (in fact each student has
two addresses)

+ studentInfo() : string

Student

- firstName : string

- lastName : string

- homeAddress : Address

- schoolAddress : Address

+ addressInfo() : string

- streetAddress : string

- city : string

- state : string

- zipCode : long

Address

Instructor: Khalil Barhoum

9ISRA University

//**

// StudentBody.cs Author: Lewis/Loftus

//

// Demonstrates the use of an aggregate class.

//**

public class StudentBody

{

//---

// Creates some Address and Student objects and prints them.

//---

public static void Main (string[] args)

{

Address school = new Address ("800 Lancaster Ave.", "Villanova",

"PA", 19085);

Address jHome = new Address ("21 Jump Street", "Lynchburg",

"VA", 24551);

Student john = new Student ("John", "Smith", jHome, school);

Address mHome = new Address ("123 Main Street", "Euclid", "OH",

44132);

Student marsha = new Student ("Marsha", "Jones", mHome, school);

Console.WriteLine (john.studentInfo());

Console.WriteLine ();

Console.WriteLine (marsha.studentInfo());

}

}

Instructor: Khalil Barhoum

10ISRA University

//**

// StudentBody.cs Author: Lewis/Loftus

//

// Demonstrates the use of an aggregate class.

//**

public class StudentBody

{

//---

// Creates some Address and Student objects and prints them.

//---

public static void Main (string[] args)

{

Address school = new Address ("800 Lancaster Ave.", "Villanova",

"PA", 19085);

Address jHome = new Address ("21 Jump Street", "Lynchburg",

"VA", 24551);

Student john = new Student ("John", "Smith", jHome, school);

Address mHome = new Address ("123 Main Street", "Euclid", "OH",

44132);

Student marsha = new Student ("Marsha", "Jones", mHome, school);

Console.WriteLine (john.studentInfo());

Console.WriteLine ();

Console.WriteLine (marsha.studentInfo());

}

}

Output

John Smith

Home Address:

21 Jump Street

Lynchburg, VA 24551

School Address:

800 Lancaster Ave.

Villanova, PA 19085

Marsha Jones

Home Address:

123 Main Street

Euclid, OH 44132

School Address:

800 Lancaster Ave.

Villanova, PA 19085

Instructor: Khalil Barhoum

11ISRA University

//**

// Student.cs Author: Lewis/Loftus

//

// Represents a college student.

//**

public class Student

{

private string firstName, lastName;

private Address homeAddress, schoolAddress;

//---

// Constructor: Sets up this student with the specified values.

//---

public Student (string first, string last, Address home,

Address school)

{

firstName = first;

lastName = last;

homeAddress = home;

schoolAddress = school;

}

continue

Instructor: Khalil Barhoum

12ISRA University

continue

//---

// Returns a string description of this Student object.

//---

public string studentInfo()

{

string result;

result = firstName + " " + lastName + "\n";

result += "Home Address:\n" + homeAddress.addressInfo() + "\n";

result += "School Address:\n" + schoolAddress.addressInfo();

return result;

}

}

Instructor: Khalil Barhoum

13ISRA University

//**

// Address.cs Author: Lewis/Loftus

//

// Represents a street address.

//**

public class Address

{

private string streetAddress, city, state;

private long zipCode;

//---

// Constructor: Sets up this address with the specified data.

//---

public Address (string street, string town, string st, long zip)

{

streetAddress = street;

city = town;

state = st;

zipCode = zip;

}

continue

Instructor: Khalil Barhoum

14ISRA University

continue

//---

// Returns a description of this Address object.

//---

public string AddressInfo()

{

string result;

result = streetAddress + "\n";

result += city + ", " + state + " " + zipCode;

return result;

}

}

Instructor: Khalil Barhoum

15ISRA University

Aggregation in UML

StudentBody

+ Main (args : string[]) : void

+ studentInfo() : string

Student

- firstName : string

- lastName : string

- homeAddress : Address

- schoolAddress : Address

+ addressInfo() : string

- streetAddress : string

- city : string

- state : string

- zipCode : long

Address

Instructor: Khalil Barhoum

16ISRA University

Aggregation v.s. Composition

• A composition relationship, also known as a

composite aggregation, is a stronger form of

aggregation where the part is created and

destroyed with the whole. A composition

relationship is indicated...

• An example of composition is a House object

contains zero or more Room objects. The state of

each Room object has an influence on the House

object. If the House object is destroyed, the Room

objects will also be destroyed.

Instructor: Khalil Barhoum

17ISRA University

Aggregation v.s. Composition

• In an aggregation relationship, the part may be

independent of the whole but the whole requires

the part hence the part can belong to more than

one whole

• An example of aggregation is a History-Class

object contains zero or more of Student objects.

The state of each Student object has an influence

on the state of the History-Class object. If the

History-Class object is destroyed, the Student

objects may continue to exist.

• An aggregation relationship is indicated in the UML

with an unfilled diamond and a line
Instructor: Khalil Barhoum

18ISRA University

Aggregation v.s. Composition

Public class Whole {

Private Part part

public Whole (Part p)

{

part = p;

}}

Public class Whole {

Private Part part

public Whole ()

{

part = new Part();

}}

+ Whole(p:Part)

Whole

- Part part

Part

+ Whole()

Whole

- Part part

Part

Instructor: Khalil Barhoum

19ISRA University

Outline

• Class Relationships

• Creating Subclasses

• Overriding Methods

• Class Hierarchies

• Abstract Classes

• Inheritance and Visibility

• Designing for Inheritance

Instructor: Khalil Barhoum

20ISRA University

Inheritance
• Inheritance allows a software developer to derive a

new class from an existing one

• The existing class is called the parent class, or
superclass, or base class

• The derived class is called the child class or
subclass

• As the name implies, the child inherits
characteristics of the parent

• That is, the child class inherits the methods and
data defined by the parent class

Instructor: Khalil Barhoum

21ISRA University

Inheritance

• Inheritance relationships are shown in a UML class

diagram using a solid arrow with an unfilled

triangular arrowhead pointing to the parent class

Vehicle

Car

• Proper inheritance creates an is-a

relationship, meaning the child is a

more specific version of the parent

Instructor: Khalil Barhoum

22ISRA University

Inheritance

• A programmer can tailor a derived class as needed

by adding new variables or methods, or by

modifying the inherited ones

• One benefit of inheritance is software reuse

• By using existing software components to create

new ones, we capitalize on all the effort that went

into the design, implementation, and testing of the

existing software

Instructor: Khalil Barhoum

23ISRA University

Deriving Subclasses

• In C#, we use the reserved word : to establish an
inheritance relationship

• See Words.cs

• See Book.cs

• See Dictionary.cs

public class Car : Vehicle

{

// class contents

}

Vehicle

Car

UML diagram

Instructor: Khalil Barhoum

24ISRA University

The protected Modifier

• Visibility modifiers affect the way that class

members can be used in a child class

• Variables and methods declared with private

visibility cannot be referenced in a child class

• They can be referenced in the child class if they are

declared with public visibility -- but public variables

violate the principle of encapsulation

• There is a third visibility modifier that helps in
inheritance situations: protected

Instructor: Khalil Barhoum

25ISRA University

The protected Modifier

• The protected modifier allows a child class to

reference a variable or method in the child class

• It provides more encapsulation than public visibility,

but is not as tightly encapsulated as private visibility

• A protected variable is also visible to any class in

the same Namespace as the parent class

• Protected variables and methods can be shown
with a # symbol preceding them in UML diagrams

Instructor: Khalil Barhoum

26ISRA University Instructor: Khalil Barhoum

27ISRA University

Inheritance and Member Accessibility

• We use the following visual representation of

inheritance to illustrate data member accessibility.

Class Hierarchy

This shows the inherited

components of the

superclass are part of

the subclass instance

Instances

Instructor: Khalil Barhoum

28ISRA University

The Effect of Three Visibility Modifiers
Namespace one

Namespace two

Instructor: Khalil Barhoum

29ISRA University

Accessibility of Super from Sub

• Everything except the private members of the Super class

is visible from a method of the Sub class.

Instructor: Khalil Barhoum

30ISRA University

• See Words.cs

• See Book.cs

• See Dictionary.cs

Book

pages : int

+ pageMessage() : void

Dictionary

- definitions : int

+ definitionMessage() : void

Instructor: Khalil Barhoum

31ISRA University

Class Diagram for Words Example

Book

pages : int

+ pageMessage() : void

Dictionary

- definitions : int

+ definitionMessage() : void

Words

+ Main (args : string[]) : void

• See Words.cs

• See Book.cs

• See Dictionary.cs

Instructor: Khalil Barhoum

32ISRA University

//**

// Words.cs Author: Lewis/Loftus

//

// Demonstrates the use of an inherited method.

//**

public class Words

{

//---

// Instantiates a derived class and invokes its inherited and

// local methods.

//---

public static void Main (string[] args)

{

Dictionary webster = new Dictionary();

Console.WriteLine ("Number of pages: " + webster.getPages());

Console.WriteLine ("Number of definitions: " +

webster.getDefinitions());

Console.WriteLine ("Definitions per page: " +

webster.computeRatio());

}

}

Instructor: Khalil Barhoum

33ISRA University

//**

// Words.cs Author: Lewis/Loftus

//

// Demonstrates the use of an inherited method.

//**

public class Words

{

//---

// Instantiates a derived class and invokes its inherited and

// local methods.

//---

public static void Main (string[] args)

{

Dictionary webster = new Dictionary();

Console.WriteLine ("Number of pages: " + webster.getPages());

Console.WriteLine ("Number of definitions: " +

webster.getDefinitions());

Console.WriteLine ("Definitions per page: " +

webster.computeRatio());

}

}

Output

Number of pages: 1500

Number of definitions: 52500

Definitions per page: 35.0

Instructor: Khalil Barhoum

34ISRA University

//**

// Book.cs Author: Lewis/Loftus

//

// Represents a book. Used as the parent of a derived class to

// demonstrate inheritance.

//**

public class Book

{

protected int pages = 1500;

//--

// Pages mutator.

//--

public void setPages (int numPages)

{

pages = numPages;

}

//--

// Pages accessor.

//--

public int getPages ()

{

return pages;

}

}

Instructor: Khalil Barhoum

35ISRA University

//**

// Dictionary.cs Author: Lewis/Loftus

//

// Represents a dictionary, which is a book. Used to demonstrate

// inheritance.

//**

public class Dictionary : Book

{

private int definitions = 52500;

//---

// Prints a message using both local and inherited values.

//---

public double computeRatio ()

{

return (double) definitions/pages;

}

continue

Instructor: Khalil Barhoum

36ISRA University

continue

//--

// Definitions mutator.

//--

public void setDefinitions (int numDefinitions)

{

definitions = numDefinitions;

}

//--

// Definitions accessor.

//--

public int getDefinitions ()

{

return definitions;

}

}

Instructor: Khalil Barhoum

37ISRA University

Class Diagram for Words

Book

pages : int

+ pageMessage() : void

Dictionary

- definitions : int

+ definitionMessage() : void

Words

+ Main (args : string[]) : void

Instructor: Khalil Barhoum

38ISRA University

The base Reference

• Constructors are not inherited, even though they
have public visibility

• Yet we often want to use the parent's constructor to
set up the "parent's part" of the object

• The base reference can be used to refer to the
parent class, and often is used to invoke the
parent's constructor

• A child’s constructor is responsible for calling the
parent’s constructor

Instructor: Khalil Barhoum

39ISRA University

The base Reference

• A child’s constructor is responsible for calling the

parent’s constructor

• The first line of a child’s constructor should use the
base reference to call the parent’s constructor

• The base reference can also be used to reference

other variables and methods defined in the parent’s

class

• See Words2.cs

• See Book2.cs

• See Dictionary2.cs

Instructor: Khalil Barhoum

40ISRA University

//**

// Words2.cs Author: Lewis/Loftus

//

// Demonstrates the use of the super reference.

//**

public class Words2

{

//---

// Instantiates a derived class and invokes its inherited and

// local methods.

//---

public static void Main (string[] args)

{

Dictionary2 webster = new Dictionary2 (1500, 52500);

Console.WriteLine ("Number of pages: " + webster.getPages());

Console.WriteLine ("Number of definitions: " +

webster.getDefinitions());

Console.WriteLine ("Definitions per page: " +

webster.computeRatio());

}

}

Instructor: Khalil Barhoum

41ISRA University

//**

// Words2.cs Author: Lewis/Loftus

//

// Demonstrates the use of the super reference.

//**

public class Words2

{

//---

// Instantiates a derived class and invokes its inherited and

// local methods.

//---

public static void Main (string[] args)

{

Dictionary2 webster = new Dictionary2 (1500, 52500);

Console.WriteLine ("Number of pages: " + webster.getPages());

Console.WriteLine ("Number of definitions: " +

webster.getDefinitions());

Console.WriteLine ("Definitions per page: " +

webster.computeRatio());

}

}

Output

Number of pages: 1500

Number of definitions: 52500

Definitions per page: 35.0

Instructor: Khalil Barhoum

42ISRA University

//**

// Book2.cs Author: Lewis/Loftus

//

// Represents a book. Used as the parent of a derived class to

// demonstrate inheritance and the use of the super reference.

//**

public class Book2

{

protected int pages;

//--

// Constructor: Sets up the book with the specified number of

// pages.

//--

public Book2 (int numPages)

{

pages = numPages;

}

continue

Instructor: Khalil Barhoum

43ISRA University

continue

//--

// Pages mutator.

//--

public void setPages (int numPages)

{

pages = numPages;

}

//--

// Pages accessor.

//--

public int getPages ()

{

return pages;

}

}

Instructor: Khalil Barhoum

44ISRA University

//**

// Dictionary2.cs Author: Lewis/Loftus

//

// Represents a dictionary, which is a book. Used to demonstrate

// the use of the super reference.

//**

public class Dictionary2 : Book2

{

private int definitions;

//---

// Constructor: Sets up the dictionary with the specified number

// of pages and definitions.

//---

public Dictionary2 (int numPages, int numDefinitions): base(numPages)

{

definitions = numDefinitions;

}

continue

Instructor: Khalil Barhoum

45ISRA University

continue

//---

// Prints a message using both local and inherited values.

//---

public double computeRatio ()

{

return (double) definitions/pages;

}

//--

// Definitions mutator.

//--

public void setDefinitions (int numDefinitions)

{

definitions = numDefinitions;

}

//--

// Definitions accessor.

//--

public int getDefinitions ()

{

return definitions;

}

}

Instructor: Khalil Barhoum

46ISRA University

Multiple Inheritance

• C# supports single inheritance, meaning that a

derived class can have only one parent class

• Multiple inheritance allows a class to be derived

from two or more classes, inheriting the members

of all parents

• Collisions, such as the same variable name in two

parents, have to be resolved

• Multiple inheritance is generally not needed, and

C# does not support it

Instructor: Khalil Barhoum

47ISRA University

Multiple Inheritance

Instructor: Khalil Barhoum

48ISRA University

Outline

• Creating Subclasses

• Overriding Methods

• Class Hierarchies

• Abstract Classes

• Inheritance and Visibility

• Designing for Inheritance

Instructor: Khalil Barhoum

49ISRA University

Overriding Methods
• A child class can override the definition of an

inherited method in favor of its own

• The new method must have the same signature as

the parent's method, but can have a different body

• The Virtual Modifier is used to mark that a

method\property(ect) can be modified in a derived

class by using the override modifier.

• The type of the object executing the method

determines which version of the method is invoked

• See Messages.cs

• See Thought.cs

• See Advice.cs

Instructor: Khalil Barhoum

50ISRA University

//**

// Messages.cs Author: Lewis/Loftus

//

// Demonstrates the use of an overridden method.

//**

public class Messages

{

//---

// Creates two objects and invokes the message method in each.

//---

public static void Main (string[] args)

{

Thought parked = new Thought();

Advice dates = new Advice();

parked.message();

dates.message(); // overridden

}

}

Instructor: Khalil Barhoum

51ISRA University

//**

// Messages.cs Author: Lewis/Loftus

//

// Demonstrates the use of an overridden method.

//**

public class Messages

{

//---

// Creates two objects and invokes the message method in each.

//---

public static void Main (string[] args)

{

Thought parked = new Thought();

Advice dates = new Advice();

parked.message();

dates.message(); // overridden

}

}

Output

I feel like I'm diagonally parked in a parallel universe.

Warning: Dates in calendar are closer than they appear.

I feel like I'm diagonally parked in a parallel universe.

Instructor: Khalil Barhoum

52ISRA University

//**

// Thought.cs Author: Lewis/Loftus

//

// Represents a stray thought. Used as the parent of a derived

// class to demonstrate the use of an overridden method.

//**

public class Thought

{

//---

// Prints a message.

//---

public virtual void message()

{

Console.WriteLine ("I feel like I'm diagonally parked in a " +

"parallel universe.");

Console.WriteLine();

}

}

Instructor: Khalil Barhoum

53ISRA University

//**

// Advice.cs Author: Lewis/Loftus

//

// Represents some thoughtful advice. Used to demonstrate the use

// of an overridden method.

//**

public class Advice : Thought

{

//---

// Prints a message. This method overrides the parent's version.

//---

public override void message()

{

Console.WriteLine ("Warning: Dates in calendar are closer " +

"than they appear.");

Console.WriteLine();

base.message(); // explicitly invokes the parent's version

}

}

Instructor: Khalil Barhoum

54ISRA University

Overriding

• The override modifier is required to extend or
modify the abstract or virtual implementation of an
inherited method

• A method in the parent class can be invoked
explicitly using the base reference

• The concept of overriding can be applied to data
and is called shadowing variables

• Shadowing variables should be avoided because it
tends to cause unnecessarily confusing code

Instructor: Khalil Barhoum

55ISRA University

Overloading vs. Overriding

• Overloading deals with multiple methods with the

same name in the same class, but with different

signatures

• Overriding deals with two methods, one in a parent

class and one in a child class, that have the same

signature

• Overloading lets you define a similar operation in

different ways for different parameters

• Overriding lets you define a similar operation in

different ways for different object types

Instructor: Khalil Barhoum

56ISRA University

Quick Check
True or False?

A child class may define a method with

the same name as a method in the parent.

A child class can override the constructor

of the parent class.

A child class cannot override a sealed not virtual

method of the parent class.

It is considered poor design when a child

class overrides a method from the parent.

A child class may define a variable with the

same name as a variable in the parent.

Instructor: Khalil Barhoum

57ISRA University

Quick Check
True or False?

A child class may define a method with

the same name as a method in the parent.

A child class can override the constructor

of the parent class.

A child class cannot override a sealed not

virtual method of the parent class.

It is considered poor design when a child

class overrides a method from the parent.

A child class may define a variable with the

same name as a variable in the parent.

True

False

True

False

True, but

shouldn't

Instructor: Khalil Barhoum

58ISRA University

Outline

• Creating Subclasses

• Overriding Methods

• Class Hierarchies

• Abstract Classes

• Inheritance and Visibility

• Designing for Inheritance

Instructor: Khalil Barhoum

59ISRA University

Class Hierarchies

• A child class of one parent can be the parent of

another child, forming a class hierarchy

Instructor: Khalil Barhoum

60ISRA University

Class Hierarchies

• Two children of the same parent are called siblings

• Common features should be put as high in the hierarchy

as is reasonable

• An inherited member is passed continually down the line

• Therefore, a child class inherits from all its ancestor

classes

• The system executes the first override-virtual method

found in the hierarchy

• There is no single class hierarchy that is appropriate for

all situations
Instructor: Khalil Barhoum

61ISRA University

The Object Class

• A class called Object is defined in the cs.lang

Namespace of the C# standard class library

• All classes are derived from the Object class

• If a class is not explicitly defined to be the child of

an existing class, it is assumed to be the child of
the Object class

• Therefore, the Object class is the ultimate root of

all class hierarchies

Instructor: Khalil Barhoum

62ISRA University

The Object Class

• The Object class contains a few useful methods,

which are inherited by all classes

• For example, the Tostring method is defined in

the Object class

• Every time we define the Tostring method, we

are actually overriding an inherited definition

• The Tostring method in the Object class is

defined to return a string that contains the name of

the object’s class along with a hash code

Instructor: Khalil Barhoum

63ISRA University

The Object Class

• The Equals method of the Object class returns
true if two references are aliases

• We can override Equals in any class to define
equality in some more appropriate way

• As we've seen, the string class defines the
Equals method to return true if two string objects
contain the same characters

• The designers of the string class have overridden
the Equals method inherited from Object in favor
of a more useful version

Instructor: Khalil Barhoum

64ISRA University

Outline

• Creating Subclasses

• Overriding Methods

• Class Hierarchies

• Abstract Classes

• Inheritance and Visibility

• Designing for Inheritance

Instructor: Khalil Barhoum

65ISRA University

Abstract Classes
• Super classes are more general and subclasses

are more specific.

• Sometimes a base class is so general that it
doesn't make sense to actually instantiate it (i.e.
create an object from it).

• Such a class is primarily a grouping place for
common data and behaviors of subclasses -- an
abstract class.

• An abstract class is a placeholder in a class
hierarchy that represents a generic concept

Instructor: Khalil Barhoum

66ISRA University

Abstract Classes

• We use the modifier abstract on the class header

to declare a class as abstract:

• An abstract class cannot be instantiated
• Now that Shape is abstract, this would be illegal:

– Shape s = new Shape();

– Specifically, it's new Shape(); that is illegal

public abstract class Shape

{

// class contents

}

Instructor: Khalil Barhoum

67ISRA University

Abstract Classes
• An abstract class often contains abstract methods with

no definitions

• An abstract method is a method with the keyword abstract, and

it ends with a semicolon instead of a method body.

– Private methods and static methods may not be declared abstract

• Also, an abstract class typically contains non-abstract

methods with full definitions

• A class declared as abstract does not have to contain

abstract methods -- simply declaring it as abstract

makes it so

• So An abstract class is a class

– defined with the modifier abstract OR

– that contains an abstract method OR

– that does not provide an implementation of an inherited abstract method
Instructor: Khalil Barhoum

68ISRA University

Abstract Classes
• The child of an abstract class must override the abstract

methods of the parent, or it too will be considered

abstract

• An abstract method cannot be defined as sealed or

static

• However an abstract classes can have static methods

which can be called directly from the abstract class

• You can also override a static method if needed

• When an abstract class inherits a virtual method from a

base class, the abstract class can override the virtual

method with an abstract method
Instructor: Khalil Barhoum

69ISRA University

Abstract Methods
• Methods can be abstract as well:

• An abstract method is a method signature without a
definition

• Abstract methods can only be created inside abstract
classes

• The main purpose of an abstract method is to be
overridden in derived classes (with the same
signature)

• Example:

public abstract class Shape // Shape is an abstract class

{ public abstract double findArea(); // findArea is an abstract method

// other methods and data

}

Instructor: Khalil Barhoum

70ISRA University

An Abstract Class in UML

Abstract classes and

methods are shown in

italics font.

Instructor: Khalil Barhoum

71ISRA University

Quick Check

What are some methods defined by the Object

class?

What is an abstract class?

Instructor: Khalil Barhoum

72ISRA University

Quick Check

What are some methods defined by the Object

class?

What is an abstract class?

ToString()

Equals(Object obj)

An abstract class is a placeholder in the class

hierarchy, defining a general concept and gathering

elements common to all derived classes. An abstract

class cannot be instantiated.

Instructor: Khalil Barhoum

73ISRA University

Outline

• Creating Subclasses

• Overriding Methods

• Class Hierarchies

• Inheritance and Visibility

• Designing for Inheritance

Instructor: Khalil Barhoum

74ISRA University

Visibility Revisited

• It's important to understand one subtle issue related
to inheritance and visibility

• All variables and methods of a parent class, even
private members, are inherited by its children

• As we've mentioned, private members cannot be
referenced by name in the child class

• However, private members inherited by child
classes exist and can be referenced indirectly

Instructor: Khalil Barhoum

75ISRA University

Visibility Revisited

• Because the parent can refer to the private

member, the child can reference it indirectly using

its parent's methods

• The base reference can be used to refer to the

parent class, even if no object of the parent exists

• See FoodAnalyzer.cs

• See FoodItem.cs

• See Pizza.cs

Instructor: Khalil Barhoum

76ISRA University

//**

// FoodAnalyzer.cs Author: Lewis/Loftus

//

// Demonstrates indirect access to inherited private members.

//**

public class FoodAnalyzer

{

//---

// Instantiates a Pizza object and prints its calories per

// serving.

//---

public static void Main (string[] args)

{

Pizza special = new Pizza (275);

Console.WriteLine ("Calories per serving: " +

special.caloriesPerServing());

}

}

Instructor: Khalil Barhoum

77ISRA University

//**

// FoodAnalyzer.cs Author: Lewis/Loftus

//

// Demonstrates indirect access to inherited private members.

//**

public class FoodAnalyzer

{

//---

// Instantiates a Pizza object and prints its calories per

// serving.

//---

public static void Main (string[] args)

{

Pizza special = new Pizza (275);

Console.WriteLine ("Calories per serving: " +

special.caloriesPerServing());

}

}

Output

Calories per serving: 309

Instructor: Khalil Barhoum

78ISRA University

//**

// FoodItem.cs Author: Lewis/Loftus

//

// Represents an item of food. Used as the parent of a derived class

// to demonstrate indirect referencing.

//**

public class FoodItem

{

Private const int CALORIES_PER_GRAM = 9;

private int fatGrams;

protected int servings;

//---

// Sets up this food item with the specified number of fat grams

// and number of servings.

//---

public FoodItem (int numFatGrams, int numServings)

{

fatGrams = numFatGrams;

servings = numServings;

}

continue

Instructor: Khalil Barhoum

79ISRA University

continue

//---

// Computes and returns the number of calories in this food item

// due to fat.

//---

private int calories()

{

return fatGrams * CALORIES_PER_GRAM;

}

//---

// Computes and returns the number of fat calories per serving.

//---

public int caloriesPerServing()

{

return (calories() / servings);

}

}

Instructor: Khalil Barhoum

80ISRA University

//**

// Pizza.cs Author: Lewis/Loftus

//

// Represents a pizza, which is a food item. Used to demonstrate

// indirect referencing through inheritance.

//**

public class Pizza : FoodItem

{

//---

// Sets up a pizza with the specified amount of fat (assumes

// eight servings).

//---

public Pizza (int fatGrams): base(fatGrams, 8)

{

}

}

Instructor: Khalil Barhoum

81ISRA University

Outline

• Creating Subclasses

• Overriding Methods

• Class Hierarchies

• Abstract Classes

• Inheritance and Visibility

• Designing for Inheritance

Instructor: Khalil Barhoum

82ISRA University

Designing for Inheritance

• As we've discussed, taking the time to create a
good software design reaps long-term benefits

• Inheritance issues are an important part of an
object-oriented design

• Properly designed inheritance relationships can
contribute greatly to the elegance, Maintainability,
and reuse of the software

• Let's summarize some of the issues regarding
inheritance that relate to a good software design

Instructor: Khalil Barhoum

83ISRA University

Inheritance Design Issues

• Every derivation should be an is-a relationship

• Think about the potential future of a class hierarchy,
and design classes to be reusable and flexible

• Find common characteristics of classes and push
them as high in the class hierarchy as appropriate

• Override methods as appropriate to tailor or change
the functionality of a child

• Add new variables to children, but don't redefine
(shadow) inherited variables

Instructor: Khalil Barhoum

84ISRA University

Inheritance Design Issues

• Allow each class to manage its own data; use the
base reference to invoke the parent's constructor to
set up its data

• Override general methods such as Tostring and
Equals with appropriate definitions

• Use abstract classes to represent general concepts
that derived classes have in common

• Use visibility modifiers carefully to provide needed
access without violating encapsulation

Instructor: Khalil Barhoum

85ISRA University

Restricting Inheritance

• If the sealed modifier is applied to an entire class,

then that class cannot be used to derive any

children at all

• Therefore, an abstract class cannot be declared as

sealed

• If the sealed modifier is applied to a method, that

method cannot be overridden in any derived

classes

Instructor: Khalil Barhoum

86ISRA University

Restricting Inheritance
In C# Methods are sealed by default, if they're not declared

as virtual and not overriding another virtual method

A method, or property on a derived class that is overriding a

virtual member of the base class can declare that member

as sealed.

This negates the virtual aspect of the member for any

further derived class. This is accomplished by putting the

sealed keyword before the override keyword in the class

member declaration. For example:

public class D : C

{ public sealed override void DoWork() { } }

Instructor: Khalil Barhoum

Sealed method is used to

define the overriding level

of a virtual method.

Sealed keyword is always

used with override keyword.

