
Object Oriented

Programming

Part I

IT Department

ISRA University

Section : 1

Instructor : Khalil Barhoum

1-2

Chapter 5 – Writing Classes

• We've been using predefined classes. Now we will learn to

write our own classes to define objects

• Chapter 5 focuses on

– class definitions and relationships

– instance data

– encapsulation and C# modifiers

– constructors

– method design and overloading

Outline

• Classes and Objects

• Using existing Classes

• Anatomy of a Class

• Encapsulation

• Method Overloading

• Static Class Members

Classes and Object

• The programs we’ve written in previous examples have used classes

defined in the c# standard class library such as Console, Math and Random

classes

• Now we will begin to design programs that rely on classes that we write

ourselves

• Classes we define ourselves are called programmer-defined classes.

• The class that contains the main method is just the starting point of a

program

• True object-oriented programming is based on defining classes that

represent objects with well-defined characteristics and functionality

Slide 5

Classes and Objects

Classes
–A class Specify the common structure(data) and behavior of a set of objects.

– A class encapsulates attributes(variables) and operations(methods).

–Each attribute has a type.

–Each operation has a signature

–A class is a blueprint from which individual objects are created.

Objects

–Object is a collection of related variables and methods

– are instances of classes,

– are created, modified, and destroyed during the execution of the system,

– have a state(variables + values=state)

Slide 6

Concepts and Phenomena

•A Phenomenon is an object of the world as it is perceived, for
example:

– Classroom M-1-409

– Professor Bob Morris

– September 5

•A Concept is an abstraction describing a set of phenomena, for
instance:

– Classrooms

– ISRA professors

– Dates

•A class represents a concept.

•An instance represents a phenomenon

Identifying Classes and Objects

• Recall that object has state and behavior
• Consider a library book object

– it’s state can be defined as the book’s title, author, ID.

– it’s primary behavior may be to checkin and checkout.

• We can represent a book in software by designing a class called
Book that models this state and behavior

– the class serves as the blueprint for a book object

• We can then instantiate as many book objects as we need for any
particular program

Slide 8

Visualization

Classes

• A class can contain data declarations and

method declarations

int size, weight;

char category;
Data declarations

Method declarations

The values of the data
define the state of an
object created from the
class

The functionality of the
methods define the
behaviors of the object

For our Book class, we
might declare a String
that represents the book’s
title

One of the methods would
be checkout

Why use objects?

• Modularity :

– Source code for an object can be written and maintained

independently of the source code for other objects

• i.e., one file for a car, one file for a plane, etc…

• Code Re-use :

– Object can be reused in different programs

• i.e., once your write the code for a car once, you are use it in as

many programs as you would like and create as many car objects as

you would like.

Outline

• Classes and Objects Revisited

• Using existing Classes

• Anatomy of a Class

• Encapsulation

• Anatomy of a Method

• Method Overloading

• Static Class Members

12

The First C# Program in this course

• The fundamental OOP concept illustrated by the
program:

An object-oriented program uses objects.

• This program displays a random number on the

screen.

13

Program1

using System;

class Program1

{

static void Main(string[] args)

{

Random rnd = new Random();

for (int i = 0; i < 100; i++)

{

Console.WriteLine(rnd.Next(1, 7);

}

}

}

Create an object

Use an object

14

Program Diagram for program1

rnd : Random

Program1

next(1, 7)

15

Dependency Relationship

rnd : Random

Program1

Instead of drawing all messages, we summarize it by showing

only the dependency relationship. The diagram shows that

Program1 “depends” on the service provided by Random class.

16

More
Examples

Object Declaration

Random rnd;

Account customer;

Student jan, jim, jon;

Vehicle car1, car2;

Object Name

One object is declared

here.

Class Name

This class must be

defined before this

declaration can be stated.

17

Object Creation

rnd = new Random () ;

More
Examples

customer = new Customer();

jon = new Student(“John C#”);

car1 = new Vehicle();

Object Name

Name of the object we

are creating here.

Class Name

An instance of this class

is created.

Argument

No arguments are used

here.

18

Declaration vs. Creation

Customer customer;

customer = new Customer();

Customer customer;

customer = new Customer();

1. The identifier customer is

declared and space is

allocated in memory.

2. A Customer object is

created and the identifier

customer is set to refer to it.

1

2

customer

1

: Customer2

19

State-of-Memory vs. Program

customer

: Customer

State-of-Memory

Notation

customer : Customer

Program Diagram

Notation

20

Name vs. Objects

Customer customer;

customer = new Customer();

customer = new Customer();

Customer customer;

customer

customer = new Customer();

customer = new Customer();

: Customer : CustomerCreated with

the first new.

Created with the second

new. Reference to the first

Customer object is lost.

21

Sending a Message

rnd . next (1 , 7) ;

More
Examples

account.deposit(200.0);

student.setName(“john”);

car1.startEngine();

Object Name

Name of the object to

which we are sending a

message.

Method Name

The name of the

message we are sending.

Argument

The argument we are

passing with the

message.

The Die Example

• Consider a six-sided die (singular of dice)

– It’s state can be defined as which face is showing

– It’s primary behavior is that it can be rolled

• We can represent a die in software by designing a class called
Die that models this state and behavior

• We’ll want to design the Die class with other data and
methods to make it a versatile and reusable resource

• Any given program will not necessarily use all aspects of a
given class

Die.C#
//**

// Represents one die (singular of dice) with faces showing values // between 1 and 6.

//**

using System;

public class DieSample1

{

public int faceValue; // current value showing on the die

public int roll()

{

Random rnd = new Random();

faceValue = rnd.Next(1, 7);

return faceValue;

}

}

The Die Class

• The DieSample1 class contains two data values

– an integer faceValue that represents the current face value

• The roll method uses the next method of the Random class to
determine a new face value

©2007 · Georges Merx and

Ronald J. Norman

Slide 25

Creating Objects - Instantiation

• The new operator creates an instance of a class and

reserves memory for it.

• The newly created object is set up by a call to a

constructor of the Customer class.

• Whenever you use the new operator, a special method

defined in the given class (a constructor) is called.

DieSample1 die1 = new DieSample1();

class variable keyword constructor

SnakeEyes.C# : Client Application uses two die objects

using System;

public class SnakeEyes

{

// Creates two Die objects and rolls them several times, counting

// the number of snake eyes that occur.

public static void Main (string [] args)

{

const int ROLLS = 500;

int num1, num2, count = 0;

DieSample1 die1 = new DieSample1();

DieSample1 die2 = new DieSample1();

for (int roll=1; roll <= ROLLS; roll++)

{

num1 = die1.roll();

num2 = die2.roll();

if (num1 == 1 && num2 == 1) // check for snake eyes

count++;

}

Console.Writeline ("Number of rolls: " + ROLLS);

Console.Writeline ("Number of snake eyes: " + count);

Console.Writeline ("Ratio: " + (float)count / ROLLS);

die1.facevalue=9; //wrong value assigned violate encapsulation

}

}

27

Program Diagram for DieSample1 example

die1 : DieSample1

SnakeEyes

die2 : DieSample1

SnakeEyes die2 : DieSample1

die1 : DieSample1

Instead of drawing all messages, we summarize it by

showing only the dependency relationship.

Data (Variables) Scope

• The scope of a variable defines where it can be used in a program.

• Data(Variables) declared at the class level can be referenced by all
methods in that class

• Data declared within a method can be used only in that method

• Data declared within a method is called local data (Variables)

Scope : Global Variables(instance variables or

field variables or data member): Example

public class test

{

int a; //This int is GLOBAL and can be

//used in any method of the class

public static void main (String args[])

{

a = 10; //We used the global int a

//inside the code without

//having to declare it again

}

}

Global variables are defined inside the class statement, but

outside of the method declaration

Data declared at the class level can be referenced by all methods
in that class

Instance Data

• The faceValue variable in the Die class is called instance
data because each instance (object) that is created has its
own version of it

• A class declares the type of the data, but it does not reserve
any memory space for it

• Every time a Die object is created, a new faceValue variable
is created as well

• The objects of a class share the method definitions, but
each object has its own data space

• That's the only way two objects can have different states

Instance Data

• We can depict the two Die objects from the
SnakeEyes program as follows

die1 5faceValue

die2 2faceValue

Each object maintains its own faceValue variable, and

thus its own state

Scope : Methods

• The scope of a variable defines where it can be used in a program.

• As we’ve seen, local variables can be declared inside a method

• The formal parameters of a method create automatic local variables when

the method is invoked

• When the method finishes, all local variables are destroyed (including the

formal parameters)

• A local variable (the variables we have been creating in our code) can only
be used in the method that declares our variable.

• For example : variables declared in the main method are LOCAL to the main
method. They can not be used outside of the main method.

– The only way to use them in another method is to pass them as a
parameter.

Scope : For Loops

• A variable defined in the declaration of a “for loop” is local to
that loop

• Example :

for (int x = 0; x < 10; x++)

{ }

• The variable (as defined in the loop) only exists inside of the
loop. You can have an entirely different “x” variable outside of
this loop.

Outline

• Classes and Objects Revisited

• Anatomy of a Class

• Encapsulation

• Anatomy of a Method

• Method Overloading

• Static Class Members

1-36

Encapsulation

• We can take one of two views of an object

– internal - the details of the variables and methods of the class that

defines it

– external - the services that an object provides and how the object

interacts with the rest of the system

• From the external view, an object is an encapsulated entity, providing a

set of specific services

• These services define the interface to the object

1-38

Encapsulation

• One object (called the client) may use another object for the
services it provides

• The client of an object may request its services (call its
methods), but it should not have to be aware of how those
services are accomplished

• Any changes to the object's state (its variables) should be
made by that object's methods

• We should make it difficult, if not impossible, for a client to
access an object’s variables directly

• That is, an object should be self-governing

1-39

Encapsulation

• An encapsulated object can be thought of as a black
box – its inner workings are hidden(Abstracted) from
the client

• The client invokes the interface methods of the object,
which manages the instance data

Methods

Data

Client

Slide 40

Encapsulation

• An encapsulated object can be thought of as a black

box; its inner workings are hidden(Abstracted) to

the client

client

toms_savings deposit

withdraw

add_interest

produce_statement

1-41

Visibility Modifiers

• In C#, we accomplish encapsulation through the
appropriate use of visibility modifiers

• A modifier is a C# reserved word that specifies particular
characteristics of a method or data

• We've used the const modifier to define constants

• C# has five visibility modifiers: public, internal, private,
protected and protected internal

• The protected modifier involves inheritance, which we will
discuss later

Visibility modifiers

1-43

Visibility Modifiers

• Members of a class that are declared with public visibility
can be referenced from anywhere

• Members of a class that are declared with private visibility
can be referenced only within that class

• Members declared with an internal visibility modifier can be
referenced only from within the current project

• When a class or a class member does not specify a modifier, the default
accessibility level of private is assumed.

1-44

Visibility Modifiers

• Public variables violate encapsulation because they allow the
client to “reach in” and modify the values directly

• Therefore instance variables should not be declared with
public visibility

• It is acceptable to give a constant public visibility, which
allows it to be used outside of the class

• Public constants do not violate encapsulation because,
although the client can access it, its value cannot be changed

1-45

Visibility Modifiers

• Methods that provide the object's services are declared with

public visibility so that they can be invoked by clients

• Public methods are also called service methods

• A method created simply to assist a service method is called a

support method

• Since a support method is not intended to be called by a client,

it should not be declared with public visibility

Visibility Modifiers

public private

Variables

Methods
Provide services

to clients

Support other

methods in the

class

Enforce

encapsulation

Violate

encapsulation

Accessors and Mutators

• Because instance data is private, a class usually provides

services to access and modify data values

• An accessor method returns the current value of a variable

• A mutator method changes the value of a variable

• The names of accessor and mutator methods take the form
getX and setX, respectively, where X is the name of the value

Accessors and Mutators

• They are sometimes called “getters” and “setters”

• Coin.cs

– The getFaceValue method is an accessor

– The setFaceValue method is a mutator

Die.cs Encapsulated
//**

// Die2.cs

// Represents one die (singular of dice) with faces showing values

// between 1 and 6.

//**

using System;

public class Die2

{

private const int MAX = 6; // maximum face value

private int faceValue; // current value showing on the die

public int roll()

{

Random rnd = new Random();

faceValue = rnd.Next(1, 7);

return faceValue;

}

}

Die.cs Encapsulated

//---

// Face value mutator. The face value is not modified if the

// specified value is not valid.

//---

public void setFaceValue (int value)

{

if (value > 0 && value <= MAX)

faceValue = value;

}

//---

// Face value accessor.

//---

public int getFaceValue()

{

return faceValue;

}

}

Mutator Restrictions

• The use of mutators gives the class designer the ability to
restrict a client’s options to modify an object’s state

• A mutator is often designed so that the values of variables can
be set only within particular limits

• For example, the setFaceValue mutator of the Die class should
have restricted the value to the valid range (1 to MAX)

• Such restrictions can be implemented through the use of an if
statement in the body of the constructor.

Slide 53

Creating Objects - Instantiation

• The new operator creates an instance of a class and

reserves memory for it.

• The newly created object is set up by a call to a

constructor of the Die class.

• Whenever you use the new operator, a special method

defined in the given class (a constructor) is called.

Die die1 = new Die();

class variable keyword constructor

Chapter 4 - 54

Constructor
• A constructor is a special method that is executed when a new instance of

the class is created.

public <class name> (<parameters>){

<statements>

}

public Bicycle () {

ownerName = "Unassigned";

}
Statements

Modifier Class Name Parameter

❑ A constructor is a
special method
that is used to set
up an object when
it is initially
created

❑ A constructor has
the same name as
the class

Constructors

– Is a special method that is used to set up a newly created object.

– Often sets the initial values of variables allocates memory for it.

– It can have parameters, which are often used to initialize some variables in the object.

– Always has the same name as the class.

– Does not return a value.

– Has no return type, not even void.

– Called when keyword new is followed by the class name and parentheses

– A constructor with an empty parameter list is called a default constructor.

• This is included (by default) by the compiler in any class that does not include its
own constructor

• It is NOT included if there is ANY constructor defined in the class. In other words,
you would then have to create your own default constructor if you wanted to have
one.

Die.cs Encapsulated + Constructor
//**

// Die3.cs //

// Represents one die (singular of dice) with faces showing values

// between 1 and 6.

//**

using System;

public class Die3

{

private int faceValue; // current value showing on the die

//---

// Constructor: Sets the initial face value of this die.

//---

public Die3()

{

faceValue = 1;

}

(more…)

Die.cs Encapsulated + Constructor
//---

// Computes a new face value for this die and returns the result.

//---

public int roll()

{

Random rnd = new Random();

faceValue = rnd.Next(1, 7);

return faceValue;

}

//---

// Face value mutator. The face value is not modified if the

// specified value is not valid.

//---

public void setFaceValue (int value)

{

if (value > 0 && value <= MAX)

faceValue = value;

}

//---

// Face value accessor.

//---

public int getFaceValue()

{

return faceValue;

}

}

Property

Slide 58

• A property is a member that provides a flexible mechanism to read, write, or compute the

value of a private field.

•

• Properties can be used as if they are public data members, but they are actually special

methods called accessors.

• This enables data to be accessed easily and still helps promote the safety and flexibility of

methods

• Many languages provide mutators, or setters that enable the data to be changed and

accessors or getters that enable the data to be retrieved C# introduced properties.

• A property looks like a data field, but it does not directly represent a storage location.

• Properties are more closely aligned to methods. They provide a way to change or retrieve

private member data

• Standard naming convention in C# for properties: Use the same name as the instance

variable or field, but start with uppercase character

Die.cs Encapsulated + Constructor
//---

// Computes a new face value for this die and returns the result.

//---

public int roll()

{

Random rnd = new Random();

faceValue = rnd.Next(1, 7);

return faceValue;

}

//---

// Face value mutator. The face value is not

// modified if the specified value is not valid.

//---

public void setFaceValue (int value)

{

if (value > 0 && value <= MAX)

faceValue = value;

}

//---

// Face value accessor.

//---

public int getFaceValue()

{

return faceValue;

}

}

//

public int FaceValue

{

get

{

return faceValue;

}

set

{

if (value > 0 && value <= MAX)

faceValue = value;

}

}

• Properties are more closely aligned to

methods. They provide a way to change or

retrieve private member data

• Standard naming convention in C# for

properties: Use the same name as the

instance variable or field, but start with

uppercase character

Accessing private fields using

get and set methods properties

Slide 60

Read:

Console.WriteLine(die1.GetFaceValue());

Write:

die1.SetFaceValue(5);

Read:

Console.WriteLine(die1.FaceValue);

Write:

die1.FaceValue=5;

I tend to use properties if the following are true:

• The property will return a single, logic value

• Little or no logic is involved (typically just return a value, or do a small check/return

value)

I tend to use methods if the following are true:

• There is going to be significant work involved in returning the value - ie: it'll get fetched

from a DB, or something that may take "time"

• There is quite a bit of logic involved, either in getting or setting the value

Slide 61

Creating Classes

• The syntax for defining a class is:

class class-name //class declaration

{

declarations of instance variables

constructors // class body

service methods

support methods //methods

getters and setters

Property

}

• The class declaration

declares the name of

the class along with

other attributes.

• The variables,

constructors, and

methods of a class

are generically called

members of the

class.

Bank Account Example

• Let’s look at another example that demonstrates the
implementation details of classes and methods

• We’ll represent a bank account by a class named Account

• It’s state can include the account number, the current
balance, and the name of the owner

• An account’s behaviors (or services) include deposits and
withdrawals, and adding interest

Driver Programs

• A driver program drives the use of other, more interesting

parts of a program

• Driver programs are often used to test other parts of the

software

• The Transactions class contains a main method that drives the

use of the Account class, exercising its services

Transactions.cs

//**

// Transactions.cs

//

// Demonstrates the creation and use of multiple Account objects.

//**

public class Transactions

{

//---

// Creates some bank accounts and requests various services.

//---

public static void Main (string[] args)

{

Account acct1 = new Account ("Ted Murphy", 72354, 25.59);

Account acct2 = new Account ("Angelica Adams", 69713, 500.00);

Account acct3 = new Account ("Edward Demsey", 93757, 769.32);

acct1.Deposit (44.10); // return value ignored

double adamsBalance = acct2.Deposit (75.25);

Console.Writeline ("Adams balance after deposit: " +

adamsBalance);

(more…)

Transactions.cs

Console.Writeline ("Adams balance after withdrawal: " +

acct2.Withdraw (480, 1.50));

acct3.Withdraw (-100.00, 1.50); // invalid transaction

acct1.AddInterest();

acct2.AddInterest();

acct3.AddInterest();

Console.Writeline ();

Console.WriteLine(acct1.getAcountInfo());

Console.WriteLine(acct2.getAcountInfo());

Console.WriteLine(acct3.getAcountInfo()); }

}

Account.cs

//**

// Account.cs C# Foundations

//

// Represents a bank account with basic services such as deposit

// and withdraw.

//**

public class Account

{

private const double RATE = 0.035; // interest rate of 3.5%

private string name;

private long acctNumber;

private double balance;

(more…)

Account.cs
//---

// Sets up this account with the specified owner, account number,

// and initial balance.

//---

public Account (string owner, long account, double initial)

{

name = owner;

acctNumber = account;

balance = initial;

}

//---

// Deposits the specified amount into this account and returns

// the new balance. The balance is not modified if the deposit

// amount is invalid.

//---

public double Deposit (double amount)

{

if (amount > 0)

balance = balance + amount;

return balance;

}

(more…)

Account.cs

//---

// Withdraws the specified amount and fee from this account and

// returns the new balance. The balance is not modified if the

// withdraw amount is invalid or the balance is insufficient.

//---

public double Withdraw (double amount, double fee)

{

if (amount+fee > 0 && amount+fee < balance)

balance = balance - amount - fee;

return balance;

}

//---

// Adds interest to this account and returns the new balance.

//---

public double AddInterest ()

{

balance += (balance * RATE);

return balance;

}

(more…)

Account.cs

//---

// Returns the current balance of this account.

//---

public double GetBalance ()

{

return balance;

}

//---

// Returns a one-line description of this account as a string.

//---

public String getAcountInfo()

{

return ("The acount number: "+ acctNumber +"\nCoustomer Name:" + name +

"\n The balance is: "+ balance);

}

}

Bank Account Example

acct1 72354acctNumber

102.56balance

name “Ted Murphy”

acct2 69713acctNumber

40.00balance

name “Jane Smith”

Bank Account Example

• There are some improvements that can be made to the
Account class

• Formal getters and setters could have been defined for all

data

• The design of some methods could also be more robust, such
as verifying that the amount parameter to the withdraw method

is positive

Outline

• Classes and Objects Revisited

• Anatomy of a Class

• Encapsulation

• Method Overloading

• Static Class Members

Chapter 5 - 73

Overloaded Methods

• Methods can share the same name as long as

– they have a different number of parameters (Rule 1)

or

– their parameters are of different data types when the

number of parameters is the same (Rule 2)

public void myMethod(int x, int y) { ... }

public void myMethod(int x) { ... } Rule 1

public void myMethod(double x) { ... }

public void myMethod(int x) { ... } Rule 2

©The McGraw-Hill Companies, Inc. Permission

required for reproduction or display. Chapter 7 - 74

Overloaded Constructor

• The same rules apply for overloaded
constructors

– this is how we can define more than one
constructor to a class

public Person() { ... }

public Person(int age) { ... } Rule 1

public Pet(int age) { ... }

public Pet(String name) { ... } Rule 2

1-75

Method Overloading

• If a method is overloaded, the method name is not
sufficient to determine which method is being called

• The signature of each overloaded method must be
unique

• The signature includes the number, type, and order of
the parameters

• Examples
– int MyMethod(int x)

– int MyMethod(double y)

– int MyMethod(int a, double b)

Method Overloading

• The compiler determines which method is being
invoked by analyzing the parameters

float tryMe(int x)

{

return x + .375;

}

float tryMe(int x, float y)

{

return x * y;

}

result = tryMe(25, 4.32)

Invocation

Methods and the Compiler

• How does the compiler know which method is the correct one to use?

– When compiling, the compiler first checks the method name.

– If multiple methods with the same name exist, it will then go to the parameter

list to decide which method is the correct one.

– If there are two (or more) methods with the same name and same parameter

list, the compiler will return an error.

• Is this correct?

– int MyMethod(int x)

– double MyMethod(int a)

– Are these two methods allowed together?

Is this correct? NO

• int MyMethod(int x)

• double MyMethod(int a)

• The compiler would not know which of the two

methods you wish to call.

• The compiler chooses the method based on the

method name first and then the parameter list (it does

not care about the return type).

1-79

Overloading Methods

• The return type of the method is not part of the signature

• That is, overloaded methods cannot differ only by their return
type

• Constructors can be overloaded

• Overloaded constructors provide multiple ways to initialize a
new object

Chapter 5 - 80

Reserved Word this

• The reserved word this is called a self-referencing

pointer because it refers to an object from the

object's method.
: Object

this

• That is, the this reference, used inside a method, refers to the

object through which the method is being executed

• Can also be used to call one constructor for another in a class ….

(see next slide)

The keyword this : calling one constuctor from

another

// constructor with 3 params

public Date(int m, int d, int y)

{

month = m; day = d; year = y;

}

// constructor with 2 params

public Date(int m, int d)

{

: this(m,d,0); //calls constructor with 3 params

}

The keyword this : as a reference variable

public class Date

{

private int m, d, y;

// constructor with 3 params

public Date(int m, int d, int y)

{

this.m = m; (Set this object’s m instance variable)

this.d = d; (Set this object’s d instance variable)

this.y = y; (Set this object’s y instance variable)

}

}

Outline

• Classes and Objects Revisited

• Anatomy of a Class

• Encapsulation

• Anatomy of a Method

• Method Overloading

• Static Class Members

Static Class Members

• Each object has its own copy of all the instance variables of the

class.

• Sometimes, only a single copy of a particular variable should be

shared by all objects created from a class.

• A static field (or class variable) is used in this case.

• Represents classwise information

– all objects in the class share the same piece of information

Keyword : static

• Used to declare a static variable

• When to use static?

– Sometimes, you want to know how many objects from a

particular class exist

– You can create a static “count” variable in the class

definition --- and have that variable

incremented/decremented upon object

initialization/deinitialization.

Static

• Static variables have class scope

• Static class members exist even when no objects of the class exist

• They are available as soon as the class is loaded into memory at
execution time.

• To access a public static member when no objects exist, prefix the class
name and a dot (.) to the to the static member (such as Math.PI).

• To access private static members when no object exists, there must be a
public static method provided and the method must be called by qualifying
its name with the class name and a dot.

Static : Methods

• A method declared static cannot acces non-static class members
because a static method can be called even when no objects of the
class have been instantiated.

• Additionally, the “this” reference can not be used in a static
method (same reason as above).

• Static methods and static variables often work together

• The following example keeps track of how many Slogan objects
have been created using a static variable, and makes that
information available using a static method

Slogan.cs

//**

// Slogan.cs

//

// Represents a single slogan or motto.

//**

public class Slogan

{

private String phrase;

private static int count = 0;

//---

// Constructor: Sets up the slogan and increments the number of

// instances created.

//---

public Slogan (String str)

{

phrase = str;

count++;

}

(more…)

Slogan.cs

//---

// Returns this slogan as a string.

//---

public String GetString()

{

return phrase;

}

//---

// Returns the number of instances of this class that have been

// created.

//---

public static int GetCount ()

{

return count;

}

}

SloganCounter.cs

//**

// SloganCounter.cs //

// Demonstrates the use of the static modifier.

//**

using System;

public class SloganCounter

{

//---

// Creates several Slogan objects and prints the number of

// objects that were created.

//---

public static void Main (string[] args)

{

Slogan obj;

obj = new Slogan ("Remember the Alamo.");

Console.WriteLine (obj.GetString());

obj = new Slogan ("Don't Worry. Be Happy.");

Console.WriteLine (obj.GetString());

obj = new Slogan ("Live Free or Die.");

Console.WriteLine(obj.GetString());

(more…)

SloganCounter.cs

obj = new Slogan ("Talk is Cheap.");

Console.WriteLine (obj.GetString());

obj = new Slogan ("Write Once, Run Anywhere.");

Console.WriteLine (obj.GetString());

Console.WriteLine();

Console.WriteLine ("Slogans created: " + Slogan.GetCount());

}

}

